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Abstract
The micro mechanical behaviour of ordered packing of powders with spherical grains under isostatic compaction was studied
using an “Updated Lagrangian”, large strain, elasto-plastic finite element program, developed for this purpose. An
appropriate contact algorithm was developed in conjunction with this program to handle the discrete nature of the problem.
Cubic and hexagonal rhombohedral packing were considered. A repetitive cellular unit pattern was deduced and the
numerical simulation of its compaction process was carried out.
The effect of different material properties on the variation of compaction pressure with specific volume (density) was
examined. The effect of elevated temperature in the Hot Isostatic Pressing (HIP) on the compaction process was also

considered.
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Introduction

With ever-expanding application and demand for the
powder technology products, it has become apparent
that an accurate mathematical model of the
compaction process is of paramount importance.
Compaction constitutes an important part of the
production route, which not only affects the
mechanical properties of the produced article, but
also ranks high in economic and design
considerations. Therefore, a mathematical model
that facilitates reliable prediction of the powder
response under various compaction forces is highly
desirable. However, a comprehensive rationalization
of the mechanics of particulate materials has so far
cvaded the engineers for a variety of intricate
reasons. The discrete nature of granular materials, as
well as the random manner in which particles
interact are the most notable causes for this lack of
total success. A great number of attempts have,
nevertheless, been made to elucidate the problem
from a variety of viewpoints. In this respect, micro
mechanical study of discontinuous media has gained
widespread recognition in recent decades. It is often
argued that a thorough description of the behavioural
pattern of particulate materials is impossible without
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due attention to the discrete phenomenon that occurs
at particle level.

This has generated an upsurge in micro mechanical
study of granular substances. Various techniques and
approaches have been attempted in order to quantify
the micro mechanical behaviour of powder masses
and to draw conclusions as to its effect onto the
macro-scale response of the medium. For instance,
extensive work has been undertaken to explain the
anisotropy of some granular materials through micro
mechanical concepts [1,2,3]. Also numerous
attempts at modelling cold or hot compaction and
sintering processes have been concerned with the
study of unit cell models [4,5,6,7].

Meanwhile, other researchers have pursued the line
of depiction of granular materials response in terms
of evolution of topological features of the materials,
[8,9] or qualitative simulation processes, [10,11] or
derivation of probabilistic and statistical parameters
[12,3] for the description of particle interaction
under loading.
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By and large, although these attempts have not been
completely successful in predicting the macro-
mechanical behaviour, but have nevertheless helped
a great deal in clarifying various intricate micro
mechanical characteristics. It is therefore proposed
here to pursue the line of unit cell models using
numerical simulation techniques.

Unit Cell Model

Many of the metallic powder production techniques,
produce virtually mono-size, spherical particles
which when poured into a die would pack in either
cubic (rhombohedral or orthorhombic) or hexagonal
(rhombohedral or tetragonal) arrangements (figure
1)[13]. Since rhombohedral cubic and hexagonal
packing are probabilistically the most viable of the
natural arrangements of powders, it is proposed to
base the micro mechanical model on these two
regular packing orders.

Due to the deterministic nature of the packing, a
repetitive cellular pattern emerges and thus the
problem reduces to simulation of compaction of
symmetrical unit cells, depicted in figure 2. This
approach is the inverse of Gadala’s[4] attempt to
provide a finite element solution to Green’s model,
where the material is assumed to contain a regular
array of cubic and hexagonal voids. The approach
has also been independently suggested by O’Donnell
and Steif [14]. Some similar results have also been
presented by Williamson et al [15].

Numerical Solution

Since powder compaction involves large plastic
deformations of the grains (Figures 3a and 3b), the
process is simulated by an elasto-plastic, large strain,
“Updated Lagrangian” finite element program in
conjunction with a linear contact algorithm [16].

The Updated Lagrangian formulation is based on the
same procedure as for the Total Lagrangian
formulation, except that the equilibrium equations
are written with respect to an updated equilibrium
configuration and not the initial state and all static
and kinematic variables are also measured with
respect to this same configuration. This
configuration may be any already defined state, but
usually it is the most recent equilibrium state [17].
The equation of motion for Updated Lagrangian
formulation must therefore be stated as:

R = I,, S,-’j+A'5E;j+AldVl )

Where S is the second Piola-Kirchhoff stress at
time t+At;

S =8, +dS; )

and since at time t the second Piola-Kirchhoff
stresses are identical to Cauchy stresses o;; [18]

Sy =0, +dS, 3)

The Lagrangian strain tensor used in Updated
Lagrangian formulation is often taken [17] to be;
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Where the differentiations are performed with
respect to the current coordinates X;.
In a similar fashion to the Total Lagrangian
formulation the Lagrangian strain increment dE;
may be decomposed into a linear and a nonlinear
part;
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Hence the equation of motion may be stated as;
R = [ (o} +ds;) s(EJav'  ©
since 8(E}, +dE, )= 5(dE, ).

Hence the final incremental equation of motion may
be stated as; [17]
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Noting that dS; =C,;.,ddEk, and higher order

terms have been omitted. Where again C .ljkl is
usually an appropriately defined constitutive relation
tensor for large strain formulation, but can also be
taken as normal elasto-plastic constitutive relation.

The validity of the solution procedure, comprising of
the large deformation solution algorithm and the
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contact detection algorithm was verified separately.
The Updated Lagrangian algorithm was checked
against the numerical test example of stretching of a
perforated plate given by Zienkiewicz [19]. The
contact detection algorithm was compared with the
Hertz analytical solution and experimental data [20].

Material Properties

The basic material model chosen for the powder
grain was linear elastic — ideal plastic. The elastic
properties were E=100GPa and v=0.3 and the
material non-linearity was modelled using a non-
hardening Von-Mises yield criterion with associative
flow rule and the yield strength was assumed to be
6,=200MPa.

In order to study the effect of various parameters the
following range of material properties were also
examined against the basic parameters.

Modulus of Elasticity E= 100, 80, 60, 40, 20 GPa
Yield Strength  o,= 300, 250, 200, 150, 100 MPa

Furthermore, in order to study the effect of various
hardening parameters, the following hardening
moduli for a hyperbolic hardening law were
examined against an initial yield strength of
0,,=100MPa and a ultimate yield strength of
0,,=200MPa to match with the basic example:
H’=1,2,3,4 GPa

Pressure-Specific Volume Plots

The variation of pressure with respect to specific
volume is of utmost importance in cold compaction,
since not only this determines the final mechanical
and sintering characteristics of the work piece, but
also it is the most relevant parameter in derivation of
work hardening law.

Here, initially, the effect of elasticity modulus and
yield strength on this relationship is examined.
Figures 4a and 4b show the variation of isostatic
compaction pressure verses specific volume for the
range of elastic modulii for the two unit cells with a
constant yield strength (c,=200MPa). It is evident
from these plots that compaction pressure/specific
volume relation is independent of the elasticity
modulus. In other words it may be stated that the
elastic rigidity has no bearing on the compaction
process except for the very brittle grains which
instead of plastically deforming, will crush and
break down

Figures S5a and 5b present the variation of
pressure/specific volume for a range of yield
strengths with constant modulus of elasticity
(E=100GPa). In contrast to.the elastic modulus,
yield strength has a significant effect on the
pressure/specific volume variation and on the final
pressure values. This is of course as expected since
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the shear strength is the characteristic that gives
solid materials its resistance to flow.

Once again it may readily be noted that there is no
difference in the pattern of progression of
compaction curves between the two cell types, and
the ultimate values of pressure are identical for
various yield strengths of the two unit cells.

From the yield-normalized plots of these curves
(Figures 6a and 6b), however, it may be seen that the
pattern of compaction of all curves are identical,
irrespective of the yield strength. It may also be
noted that the ultimate pressure value for full
compaction is approximately three times the yield
strength irrespective of cell types, which confirms
the reports in the journals [21,22].

This fact suggests that the initial specific volume has
no influence on the ultimate value of compaction
pressure necessary for full compaction, provided the
material properties are the same.

Figures 7a and 7b present the effect of various
hardening moduli on the compaction curves. It may
be noted that in spite of the fact that variation of
compaction force with specific volume is different
for different hardening moduli, but the final "
compaction force necessary for full compaction is
the same. This is explained by the fact that the
ultimate value of yield strength is attained in all
cases due to large plastic deformations different
hardening moduli only affect the rate of this
attainment and not the final value.

Temperature Effect

It is a well-known fact that in Hot Isostatic Pressing
(HIP) as well as pressureless sintering processes,
(compacted) powder particles exhibit viscous flow
and diffusive transport due to the effects of high
temperatures. This viscous flow and diffusions
promote interparticle neck (contact) growth that
constitutes an important aspect of densification
process.

The viscous flow (or sometimes better known as
creep) is a phenomenon well acquainted in
engineering. However, when environment
temperature is close to room temperature, creep can
usually be detected if the material is subjected to
sustained and prolonged loading, whereas in
“hipping” and sintering processes, the elevated
temperatures soften the material (i.e. increase
ductility and reduce shear strength) to an extent that
even the secondary force effects, such as capillary
forces, surface tension forces and minute body
forces can exercise a major influence on the flow
mechanisms in a relatively short time span.

The hardness and strength of crystalline materials
depend on dislocation mobility. Any phenomenon
that hinders the motion of dislocations, increase
hardness and strength but decreases ductility and




visa-versa. Mobility increases with temperature and
physical properties change accordingly.

The numerical model used here for grain compaction
is basically rate-independent and hence in the
simulation process, the creep effect within the time
frame cannot be accounted for. However, the effect
of temperature is in a way exhibited through
variation of yield strength. This is, of course, based
upon the fact that shear strength of material is
inversely proportional to the temperature and noting
that the dependence of the yield strength on
temperature  varies for  different materials.
Therefore, provided that the variation of yield
strength with temperature is known for the material,
the pressure/specific volume variation may be scaled
down accordingly.

Conclusion

Although the micro mechanical model of the
compaction process proposed here is a simplified
representation  of the actual phenomena, it
nevertheless has been shown to be capable of
capturing some subtle characteristics of such a
process. The collapse load was found to be about
three times the yield strength, which ties in well with
many previously suggested values [21,22].

A number of intricate details of the powder
compaction have also been unraveled: From the
pattern of propagation of plasticity region it appears
that even at full compaction the central core of the
grain remains unaffected by plasticity. This may
have a direct bearing on any hardening postulates
since hardening occurs where plastic flow has taken
place. Hence at the end of compaction of a
hardening material, the yield strengths of various
regions of the grains are different.

The effect of temperature incorporated through
variation of yield strength is shown to have a
translatory role on the pressure/specific volume
variation, rather than changing the whole process.
Hence hot pressing may be simulated by simply
evaluating the corresponding yield strength
associated with that temperature.

Due to the fact that the present compaction model is
only concerned with the latter part of the compaction
process of powders (i.e. crushing of the grains) and
consequently excludes any compaction due to re-
arrangement of particles, a one to one comparison of
this model with experimental data is not possible. In
some cases a significant part of compaction occurs
as a result of re-stacking and re-arrangement of
particles, which is not modelled here. However, if
this model were to be incorporated into a more
global model that deals with the frictional
deformation of the granular material, a better picture
of the over all process would emerge.
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